
LABIMA – Laboratory of Maritime Engineering

Florence, 27th September 2018

The DualSPHysics code

José Domínguez – Ephyslab - UVigo

Video link:
https://youtu.be/pnLTWUk6wPc

DualSPHysics code

https://youtu.be/pnLTWUk6wPc

Video link:
https://youtu.be/kWS6-0Z_jIo

DualSPHysics code

https://youtu.be/kWS6-0Z_jIo

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

2. DualSPHysics project

3. SPH formulation

4. DualSPHysics code
4.1. Source files

4.2. Object-Oriented Programming

4.3. Execution diagram

5. DualSPHysics implementation
5.1. CPU acceleration

5.2. GPU acceleration

5.3. Multi-GPU acceleration

PHYSICAL GOVERNING EQUATIONS

LAGRANGIAN DESCRIPTION

(material description)

EULERIAN DESCRIPTION

(spatial description)

COMPUTATIONAL METHODS

GRID-BASED METHODS

MESHFREE METHODS

MESHFREE PARTICLE METHODS

(particle represents a part of

the continuum domain)

SMOOTHED PARTICLE HYDRODYNAMICS

1.1. Smooth Particle Hydrodynamics

SPH method was invented for astrophysics during the seventies, but now it is

applied in many different fields including fluid dynamics and solid mechanics.

Fluid is represented using particles which move according to the governing

dynamics.

Comparing to grid-based methods, SPH interactions are carried out between a

given particle and its moving neighbours. Thus, these neighbours are

unknown since they change at each instant.

1.1. Smooth Particle Hydrodynamics

SPH method was invented for astrophysics during the seventies, but now it is

applied in many different fields including fluid dynamics and solid mechanics.

Fluid is represented using particles which move according to the governing

dynamics.

SPH is particularly suited to describe a variety of free-surface flows:

• Wave propagation over a beach.

• Plunging breakers.

• Wave-structure interactions.

• Solid bodies impacting on

water surface.

• Dam breaks.

1.1. Smooth Particle Hydrodynamics

Drawbacks of SPH:

• SPH presents a high computational cost that increases when increasing the

number of particles.

• The simulation of real problems requires a high resolution which implies

simulating millions of particles.

The time required to simulate a few seconds is too large. One second of

physical time can take several days of calculation.

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

because:

• Each particle interacts

with more than 250

neighbours.

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

because:

• Each particle interacts

with more than 250

neighbours.

• ∆t=10-5-10-4 so more

than 16,000 steps are

needed to simulate 1.5 s

of physical time.

1.2. Why is SPH too slow?

Drawbacks of SPH:

• SPH presents a high computational cost that increases when increasing the

number of particles.

• The simulation of real problems requires a high resolution which implies

simulating millions of particles.

The time required to simulate a few seconds is too large. One second of

physical time can take several days of calculation.

IT IS NECESSARY TO USE HPC TECHNIQUES TO REDUCE THESE

COMPUTATION TIMES.

1.2. Why is SPH too slow?

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• OpenMP (Open Multi-Processing)

1.3. High Performance Computing (HPC)

– Model of parallel programming for systems of

shared memory.

– Portable and flexible programming interface

using directives.

– Its implementation does not involve major

changes in the code.

– The improvement is limited by the number of

cores.

OPENMP IS THE BEST OPTION TO OPTIMIZE THE PERFORMANCE

OF THE MULTIPLE CORES OF THE CURRENT CPUS.

Multi-core processor

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• MPI (Message Passing Interface)

– Message-passing library specification for

systems of distributed memory: parallel

computers and clusters.

– Several processes are communicated by calling

routines to send and receive messages.

– The use of MPI is typically combined with

OpenMP in clusters by using a hybrid

communication model.

– Very expensive for a small research group.

MPI IS THE BEST OPTION TO COMBINE THE RESOURCES OF

MULTIPLE MACHINES CONNECTED VIA NETWORK.

MPI cluster

1.3. High Performance Computing (HPC)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• GPGPU (General-Purpose Computing on Graphics Processing Units)

– It involves the study and use of parallel

computing ability of a GPU to perform general

purpose programs.

– New general purpose programming languages

and APIs (such as Brook and CUDA) provide

an easier access to the computing power of

GPUs.

– New implementation of the algorithms used in

CPU is necessary for an efficient use in GPU.

GPU

1.3. High Performance Computing (HPC)

Central Processing Units (CPUs)

• general purpose processor (any complex

calculations)

• designed for serial data processing

• complex and large cores, so limited number

cores in one CPU

1.3. High Performance Computing (HPC)

Graphics Processing Units (GPUs)

• designed for graphics rendering

• designed for simple calculations that require

high parallelism

• simple cores, but large number of cores in

one GPU

vs.

Advantages: GPUs provide a high calculation power with very low cost and without

expensive infrastructures.

Drawbacks: An efficient and full use of the capabilities of the GPUs is not

straightforward.

Graphics Processing Units (GPUs)

• video game market boosted its

improvement

• their computing power has increased

much faster than CPUs.

• powerful parallel processors

1.3. High Performance Computing (HPC)

Theoretical GFLOP/s at base clock CUDA Programming Guide v9.1

GPUs are an accessible tool to accelerate SPH,

all numerical methods in CFD and any computational method

http://www.nvidia.com

Why GPUs?

1.3. High Performance Computing (HPC)

http://www.nvidia.com/

https://www.top500.org/lists/2018/06/

TOP500 LIST – JUNE 2018Why GPUs?

1.3. High Performance Computing (HPC)

https://www.top500.org/lists/2018/06/

https://www.top500.org/green500/lists/2018/06/

GREEN500 LIST – JUNE 2018Why GPUs?

1.3. High Performance Computing (HPC)

https://www.top500.org/green500/lists/2018/06/

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

2. DualSPHysics project

3. SPH formulation

4. DualSPHysics code
4.1. Source files

4.2. Object-Oriented Programming

4.3. Execution diagram

5. DualSPHysics implementation
5.1. CPU acceleration

5.2. GPU acceleration

5.3. Multi-GPU acceleration

SPHysics is a numerical model SPH developed for the study of free-surface problems.

It is a code written in Fortran90 with numerous options (different kernels, several

boundary conditions,…), which had already demonstrated high accuracy in several

validations with experimental results… but it is too slow to apply to large domains.

The DualSPHysics code was created starting from SPHysics.

2. DualSPHysics project

Why two implementations?

This code can be used on machines with GPU and without GPU.

It allows us to make a fair and realistic comparison between CPU and GPU.

Some algorithms are complex and it is easy to make errors difficult to detect. So they are

implemented twice and we can compare results.

It is easier to understand the code in CUDA when you can see the same code in C++.

Drawback: It is necessary to implement and to maintain two different codes.

First version in late 2009.

It includes two implementations:

- CPU: C++ and OpenMP.

- GPU: CUDA.

Both options optimized for the best

performance of each architecture.

2. DualSPHysics project

Pre-processing
tools

DualSPHysics
solver

Post-processing
tools

Geometry (cad, 3ds,

dwg, stl, vtk…)

Configuration
(parameters, motion...)

Visualization
(videos, images, graphs)

Result analysis
(Data in csv, xls, m...)

DSPH project includes:

Pre-processing tools:

• Converts geometry into

particles.

• Provides configuration

for simulation.

DualSPHysics solver:

• Runs simulation using

SPH particles.

• Obtains data simulation

for time intervals.

Post-processing tools:

• Calculates magnitudes using

particle data.

• Generates images and

videos starting form SPH

particles.

2. DualSPHysics project

www.dual.sphysics.org

2. DualSPHysics project

and many contributors

www.dual.sphysics.org

2. DualSPHysics project

People working on DualSPHysics project:

Prof. Moncho Gómez Gesteira

Dr Alejandro J.C. Crespo

Dr José M. Domínguez

Dr José González Cao

Orlando G. Feal

Andrés Vieira

Dr Benedict D. Rogers

Dr Athanasios Mokos

Dr Georgios Fourtakas

Prof. Peter Stansby

Alex Chow

Annelie Baines

Dr Renato Vacondio

Prof. Paolo Mignosa

Dr Corrado Altomare

Dr Tomohiro Suzuki

Tim Verbrugghe

Prof. Rui Ferreira

Dr Ricardo Canelas

Moisés Brito

Dr Xavier Gironella

Dr Andrea Marzeddu

2. DualSPHysics project

It has been downloaded and used by researchers but also by companies:

NASA JSC, BAE Systems, Volkswagen AG, McLaren Racing Ltd, Forum NOKIA,

NVIDIA, AECOM, HDR Engineering, ABPmer, DLR, Maine Marine Composites,

CFD-NUMERICS, BMT Group, Oak Ridge National Laboratory, Rainpower

Norway, American Wave Machines,, National Renewable Energy Laboratory in

U.S.A., Atria Power Corporation Ltd., Global Hydro Energy, Carnegie Wave

Energy Ltd, etc.

2. DualSPHysics project

DualSPHysics Package

http://dual.sphysics.org

2. DualSPHysics project - Download

DualSPHysics Code on GitHub (since v4.2)

https://github.com/DualSPHysics/DualSPHysics

http://dual.sphysics.org/
https://github.com/DualSPHysics/DualSPHysics

bin

doc

examples

src

2. DualSPHysics project - Download

Linux & Windows
executables

Documentation

Full examples

Source code

DualSPhysics Package v4.2 Linux & Windows executables:

Pre-processing:
• GenCase4
SPH solver:
• DualSPHysics4.2
• DualSPHysics4.0_LiquidGas
• DualSPHysics3.4_LiquidSediment
Post-processing (visualization):
• PartVTK4
• PartVTKOut4
• IsoSurface4
Post-processing (calculations):
• BoundaryVTK4
• ComputeForces4
• FloatingInfo4
• FlowTool4
• MeasureTool4

bin

doc

examples

src

2. DualSPHysics project - Download

Documentation (guides and other help files) :

Pre-processing:
• XML_v4.0_GUIDE.pdf
• ExternalModelsConversion.pdf
SPH solver:
• DualSPHysics_v4.2_GUIDE.pdf
• DualSPHysics_v4.0_LiquidGas_GUIDE.pdf
Post-processing:
• PostprocessingCalculations_v4.2.pdf

Help of executables
XML Templates for configuration

Linux & Windows
executables

Documentation

Full examples

Source code

DualSPhysics Package v4.2

bin

doc

examples

src

2. DualSPHysics project - Download

Full examples (also pre-processing & post-processing):

Linux & Windows
executables

Documentation

Full examples

Source code

DualSPhysics Package v4.2

DamBreak

Periodicity

MovingSquare

ExternalForces

SloshingTank

WaveMaker

WaveMakerFile

WavesFlap

WavesPiston

WavesPistonAWAS

Floating

Pouseuille

FloatingWaves

Pump

DEM

Full examples - LiquidSediment & LiquidGas:

Dambreak

SurfaceTension

ObstacleImpact

SloshingTank

DEM

DamBreak

WetDambreak

bin

doc

examples

src

2. DualSPHysics project - Download

Source code ready to compile:

Linux & Windows
executables

Documentation

Full examples

Source code

DualSPhysics Package v4.2

Codes:
• DualSPHysics v4.2
• DualSPHysics v4.0 LiquidGas
• ToVTK (data usage example)
Precompiled libraries:
• Linux (gcc4 & gcc5)
• Windows (Visual Studio 2015)
Compiling:
• Makefiles for Linux
• Project for Visual Studio 2015
• CMake file

DUALSPHYSICS - ALL VERSIONS

Downloads: 22,278 (70% Windows)

30%

70%

Linux

Windows

DUALSPHYSICS V1.2 (2011)

Downloads: 701 (65% Windows)

DUALSPHYSICS V2.0 (2012)

Downloads: 6,472 (71% Windows)

DUALSPHYSICS V3.0 (2013)

Downloads: 6,982 (73% Windows)

DUALSPHYSICS V4.0 (2016)

Downloads: 7,072 (72% Windows)

DUALSPHYSICS V4.2 (May 2018)

Downloads: 1051

GitHub downloads: ???

2. DualSPHysics project - Download

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

2. DualSPHysics project

3. SPH formulation

4. DualSPHysics code
4.1. Source files

4.2. Object-Oriented Programming

4.3. Execution diagram

5. DualSPHysics implementation
5.1. CPU acceleration

5.2. GPU acceleration

5.3. Multi-GPU acceleration

 Time integration scheme:

- Verlet [Verlet, 1967]

- Symplectic [Leimkhuler, 1996]

 Variable time step [Monaghan and Kos, 1999]

 Kernel functions:

- Cubic Spline kernel [Monaghan and Lattanzio, 1985]

- Quintic Wendland kernel [Wendland, 1995]

- Gaussian kernel

 Density treatment:

- Delta-SPH formulation [Molteni and Colagrossi, 2009]

 Viscosity treatments:

- Artificial viscosity [Monaghan, 1992]

- Laminar viscosity + SPS turbulence model [Dalrymple and Rogers, 2006]

 Weakly compressible approach using Tait’s equation of state

3. SPH formulation: DualSPHysics v4.2

 Shifting algorithm [Lind et al., 2012]

 Dynamic boundary conditions [Crespo et al., 2007]

 Floating objects [Monaghan et al., 2003]

 Periodic open boundaries [Gómez-Gesteira et al., 2012a]

 Coupling with Discrete Element Method (DEM) [Canelas et al., 2016]

 External body forces [Longshaw and Rogers, 2015]

 Double precision [Domínguez et al., 2013c]

 Wave generation [Biesel and Suquet, 1951; Madsen, 1971; Liu and Frigaard, 2001]

 Piston- and flap-type long-crested second-order wave generation

 Passive and Active Wave Absorption System [Altomare et al., 2017]

 Multi-phase (soil-water) [Fourtakas and Rogers, 2016] – executable only

 Multi-phase (liquid-gas) [Mokos et al., 2015]

3. SPH formulation: DualSPHysics v4.2

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

2. DualSPHysics project

3. SPH formulation

4. DualSPHysics code
4.1. Source files

4.2. Object-Oriented Programming

4.3. Execution diagram

5. DualSPHysics implementation
5.1. CPU acceleration

5.2. GPU acceleration

5.3. Multi-GPU acceleration

For the implementation of SPH, the code is organised in 3 main steps that are repeated

each time step till the end of the simulation.

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Neighbour list (NL):

Particles are grouped in cells and reordered to

optimise the next step.

Particle interactions (PI):

Forces between particles are computed, solving

momentum and continuity equations.

This step takes more than 95% of execution

time.

System update (SU):

Starting from the values of computed forces, the

magnitudes of the particles are updated for the

next instant of the simulation.

5. DualSPHysics implementation

Full GPU implementation

• DualSPHysics was implemented using the CUDA programming language to run

SPH method on Nvidia GPUs.

• GPU is used in all steps (Neighbour List, Particle Interaction and System Update).

• This approach is the most efficient since:

• All particle data is kept in GPU memory and the transfers CPU-GPU are removed.

• Neighbour List and System Update are parallelized, obtaining a speedup also in this

part of the code.

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Data transfer
CPU-GPU

Data transfer
GPU-CPU

GPU

5.2. GPU acceleration

Testcase for results

• Dam break flow impacting on a structure (experiment of Yeh and Petroff at the

University of Washington).

• Physical time of simulation is 1.5 seconds.

5.2. SPH implementation: CPU acceleration

Testcase: Dam break flow impacting on a structure

PhD Thesis defense, November 7, 2014, Ourense (Spain)

Video link:
https://youtu.be/_OFsAVuwxaA

https://youtu.be/_OFsAVuwxaA

Runtime for CPU and different

GPU cards.

0

2

4

6

8

10

0 4,000,000 8,000,000 12,000,000

R
u

n
ti

m
e

 (
h

)

N

CPU Single-core

CPU 8 cores

GTX 480

GTX 680

GTX Titan

GTX
480

GTX
680

Tesla
K20

GTX
Titan

vs CPU 8 cores 13 16 17 24

vs CPU Single-core 82 102 105 149

0

30

60

90

120

150

Speedups of GPU against CPU

simulating 1 million particles.

After optimising the performance of DualSPHysics on CPU and GPU...

The most powerful GPU (GTX Titan) is 149 times faster than CPU (single core execution)

and 24 times faster than the CPU using all 8 cores.

5.2. GPU acceleration: Results

Titan X is 3.3 times faster than GTX Titan

using single precision

Tesla P100 is 5.3 times faster than GTX Titan

using double precision

The simulation of real cases implies huge domains with a high resolution, which

implies simulating tens or hundreds of million particles.

The use of one GPU presents important limitations:

- Maximum number of particles depends on the memory size of GPU.

- Time of execution increases rapidly with the number of particles.

0

8

16

24

32

40

GTX 480 GTX 680 Tesla K20 Tesla M2090 GTX Titan

Maximum number of particles (millions)

0

4

8

12

16

20

0 2 4 6 8 10 12 14 16 18 20

Particles (millions)

Runtime (hours)

GTX 480
GTX 680
GTX Titan

5.2. GPU acceleration: Results

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
6 cores

GPU
480 cores

CPU
6 cores

CPU
6 cores

MPI is used to combine resources of multiple machines connected via network.

The physical domain of the simulation is divided among the different MPI processes.

Each process only needs to assign resources to manage a subset of the total amount of

particles for each subdomain.

5.3. Multi-GPU implementation N×

The use of MPI implies an overcost:

- Communication: Time dedicated to the interchange of data between processes.

- Synchronization: All processes must wait for the slowest one.

Solutions:

- Overlapping between force computation and communications: while data is

transferred between processes, each process can compute the force interactions among its

own particles. In the case of GPU, the CPU-GPU transfers can also be overlapped with

computation using streams and pinned memory.

- Load balancing. A dynamic load balancing is applied to minimise the difference

between the execution times of each process.

5.3. Multi-GPU implementation

Dynamic load balancing

Due to the nature Lagrangian of the SPH method, is necessary to balance the load

throughout the simulation.

FIRST approach according to the number of fluid particles

The number of particles must be redistributed after some time steps to get the

workload balanced among the processes and minimise the synchronisation time.

SECOND approach according to the required computation time of each device

Enables the adaptation of the code to the features of a heterogeneous cluster

achieving a better performance.

N×5.3. Multi-GPU implementation

0

32

64

96

128

0 32 64 96 128

GPUs

Speedup - Weak scaling

1M/Gpu
4M/Gpu
8M/Gpu
Ideal

Efficiency close to 100% simulating 4M/GPU

with 128 GPUs Tesla M2090 of BSC.

This is possible because the time dedicated to

tasks exclusive of the multi-GPU executions

(communication between processes, CPU-GPU

transfers and load balancing) is minimum.

N×

ref

ref

NNT

NNT
NS






)(

)(
)(

N

NS
NE

)(
)(

5.3. Multi-GPU: Performance

dp= 6 cm, h= 9 cm

np = 1,015,896,172 particles

nf = 1,004,375,142 fluid particles

physical time= 12 sec

of steps = 237,065 steps

runtime = 79.1 hours

using 64 GPUs Tesla M2090 of the BSC-CNS

64×

Simulation of 1 billion SPH particles

Large wave interaction with oil rig using 10^9 particles

5.3. Multi-GPU: Large simulations

Simulación de un billón de partículas SPH

Video link:
https://youtu.be/B8mP9E75D08

https://youtu.be/B8mP9E75D08

32×

Simulation of a real case

Using 3D geometry of the beach Itzurun in Zumaia-Guipúzcoa (Spain) in Google Earth

32 x M2090 (BSC)

Particles: 265 Millions

Physical time: 60 seconds

Steps: 218,211

Runtime: 246.3 hours

5.3. Multi-GPU: Large simulations

Video links:
https://youtu.be/nDKlrRA_hEA

https://youtu.be/kWS6-0Z_jIo

32 x M2090 (BSC) Particles: 265 Millions Physical time: 60 seconds Runtime: 246.3 hours

https://youtu.be/nDKlrRA_hEA
https://youtu.be/kWS6-0Z_jIo

Consumers can now easily purchase desktop machines or a single

compute node with 4-8 GPUs for only a few thousand euros.

New Multi-GPU code optimized for Multi-GPU machines

CUDA (and OpenMP), not MPI

Only for several GPUs in the same machine

Typical clusters have 2, 4 or 8 GPUs

Simulations with 100-200M particles

120M using 4x GTX Titan (6GB)

n×5.3. Multi-GPU: New approach

Consumers can now easily purchase desktop machines or a single

compute node with 4-8 GPUs for only a few thousand euros.

New Multi-GPU code optimized for Multi-GPU machines

CUDA (and OpenMP), not MPI

Only for several GPUs in the same machine

Typical clusters have 2, 4 or 8 GPUs

Simulations with 100-200M particles

120M using 4x GTX Titan (6GB)

n×5.3. Multi-GPU: New approach

Desktop/single-node GPU

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
6 cores

GPU
480 cores

CPU
6 cores

CPU
6 cores

GPU clustersOne GPU card

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
6 cores

GPU
480 cores

CPU
6 cores

CPU
6 cores

2011-today

Release of

open-source code

since 2012

Simulations on

Supercomputing

Centers (BSC)

2019

To be released as

open-source code

n×5.3. Multi-GPU: New approach

Video link:
https://youtu.be/EvSDFRfJToQ

Thank you for your attention

https://youtu.be/EvSDFRfJToQ

