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Eulerian description of motion: describes changes as they occur at a fixed point in 
the fluid

Lagrangian description of motion: describes changes which occur as you follow a 
fluid particle along its trajectory 

The Eulerian derivative is the rate of change at a fixed position

e.g. measuring the flow in a river at a fixed location

The Lagrangian derivative is the ‘total rate of change’ and is the derivative along a 
fluid trajectory
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Mesh-based methods

In general:

Mesh-based methods are good for
(i) confined computational domains
(ii) computations where the boundaries are not moving

Mesh-based methods are “bad” for:
(i) mesh generation – can be very expensive
(ii) highly nonlinear deformation of the fluid body

 So, we need numerical methods where we are not constrained by the 
restrictions of the numerical mesh….  Hence, Meshless methods



Lagrangian Methods Eulerian Methods

Grid Attached to moving 
particles

Fixed in space

Track Movement of any 
point on materials

Mass, momentum & 
energy flux across 
grid nodes & mesh 
cell boundary

Time history Easy to obtain time-
history on point 
attached to materials

Difficult to obtain time-
history on point 
attached to materials

Moving boundaries & 
interfaces

Easy to track Difficult to track 

Irregular geometry Easy to model Difficult to model with 
accuracy

Meshless methods

Quick comparison of Lagrangian & Eulerian methods:

From Liu & Liu (2003)



Mesh-based method

Robust but rigid

Following L.D. Libertsky



Mesh free

Flexible and adaptable



Meshless methods

• What is a Meshless method? No computational grid or mesh

The computational points now take the form of ‘particles’ or nodal interpolation 
‘points’, similar (but different) to the nodal points in the Finite Element Method

Different meshless techniques are presented in Lagrangian form

Fluid Particles



Fundamentals of SPH

The Delta Function

The interpolation procedure within SPH is based on the (discrete) approximation 
that the value of a function A(x) at a point x in space can be expressed as:

where δ(x) is the Dirac delta function defined as 
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Fundamentals of SPH
The SPH Integral Interpolation

In our computations, we cannot use a delta function since it is infinitesimally 
narrow which means that the interpolation region, Ω, would not overlap with 
other particles/nodal interpolation points.  

Hence, the interpolation procedure within SPH approximates the delta 
function with its own weighting function called the SMOOTHING KERNEL, W

where < · > is the integral SPH averaged quantity and 

( ) ( ) ( ) Ω′′−= ∫
Ω
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Fundamentals of SPH

The SPH Smoothing Kernel

As stated, the interpolation procedure within SPH approximates the delta 
function with its own weighting function called the SMOOTHING KERNEL

The kernel depends on two quantities:

(i) The interpolation distance (distance between particles) = r – r’
(ii) The smoothing length, h (=characteristic length)

( ) ( ) ( ) Ω′′−= ∫
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Fundamentals of SPH

The SPH Smoothing Kernel and smoothing length

Smoothing Kernel example:

The smoothing length h defines the extent of the kernel. 

In SPH simulations, it is either:
(i) Kept constant at a present value
(ii) Adapted during the simulation according to some criterion (variable h)

W(r-r’,h)

Compact support
of kernel

Water
Particles

2h

Radius of
influence

 r



Fundamentals of SPH
The SPH Smoothing Kernel
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Fundamentals of SPH

The SPH Smoothing Kernel: Example 5th-order (Wendland kernel)

The Wendland smoothing kernel is defined as:

Advantages: (i) is high–order & therefore captures higher-order effects
(ii) has improved accuracy

Disadvantage: (i) is high–order & therefore computationally expensive
(ii) has a point of maximum (extremum) in its gradient

αD is normalisation factor to 
ensure integral of the kernel 
itself reproduces unity, and is 
defined as:

2-D:    7/(4πh2)   

3-D:    7/(8πh3) 
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Fundamentals of SPH
The DISCRETE SPH Interpolation procedure

In the numerical SPH method, we must approximate the integral interpolation 
procedure 

where dr’=dΩ becomes the volume of each particle

Subscripts i or j denotes particles i or j
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Fundamentals of SPH

Axioms of SPH Integral Interpolation

The interpolation procedure within SPH with the smoothing kernel depends on 3 
axioms in order to give accurate results

Partition of unity:

Kernel tends to delta fn:

Kernel is k-times differentiable

and its derivatives are continuous:
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SPH Equations

ρ is density, v is velocity vector, t is time, p is pressure, ν0 is viscosity and F are 
body forces

v.
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The governing equations we want to solve are the Navier-Stokes equations 
expressed in Lagrangian form:
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We will try 
inviscid only



SPH Continuity Equation
The continuity equation we wish to solve is:

u∇⋅−= ρρ
td

d
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The Basic SPH Equations

Conservation of Mass

Conservation of Momentum

Conservation of Energy

These are the standard SPH equations used to solve many problems in the fields 
mentioned earlier (astrophysics, coastal hydrodynamics, gas dynamics, etc.)

We need one more equation:
So, the mass of each equation does not change (in the standard formulation)
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Equation of state
We now examine how to close the equations for water using an equation of state.

We have a choice of 3 options: 2 different equations of state and 1 methodological. 

ρw = 1000 kg/m3 density of water, 
γ = 7 polytropic index,  
co is the speed of sound for  ρ = ρw

Note speed of sound for each particle
The water is weakly compressible.
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(a) Tait’s equation of state is 

(b) Morris’s equation of state is  (γ = 1) ρw =  = 1000 kg/m3 density of water,   
co is the speed of sound for  ρ = ρw

The water is more compressible.

( )wocp ρρ −= 2

(c) Enforce incompressibility via the pressure Poisson equation 
different forms of this Poisson equation
This is not very popular since it can be very difficult to 
maintain strict incompressibility and there are 
problems with boundary conditions.

??2 =∇ p



Equation of state
We now examine how to close the equations for water using an equation of state.

We have a choice of 3 options: 2 different equations of state and 1 methodological. 

ρw = 1000 kg/m3 density of water, 
γ = 7 polytropic index,  
co is the speed of sound for  ρ = ρw

Note speed of sound for each particle
The water is weakly compressible.
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(a) Tait’s equation of state is 



Fundamentals of Smoothed 
Particle Hydrodynamics (SPH)
Viscosity



SPH VISCOSITY
Viscous effects can be included in SPH in 3 ways:

(i) Artificial viscosity

(ii) Laminar viscosity

(iii) Turbulence models

(i) Artificial viscosity

As the name suggests, this is artificial and uses empirical coefficients to model 
the energy dissipation.  

In SPH notation, the momentum equation is written as
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SPH VISCOSITY

The artificial viscosity proposed by Monaghan (1992) has been used very often 
due to its simplicity.  In the limit Πij the viscosity term tends to the differential 

η2= 0.01h2

α is a free parameter that can be changed according to each problem.

Therefore it’s empirical!!  BAD!
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SPH VISCOSITY
(ii) Laminar viscosity

The momentum conservation equation with laminar viscous stresses is given by

So, in SPH notation, the momentum equation becomes:

where the laminar stress term simplifies (Morris et al., 1997) to

where  ν0 is the kinetic viscosity of laminar flow.
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SPH VISCOSITY: Turbulence

(iii) Turbulence Modelling

This is specialised and really depends on what physics you are modelling and 
what level of sophistication you would want in your turbulence model.

Here we just give the governing equations we are solving and the corresponding 
SPH equations

τ represents the shear stresses due to turbulence.

The SPH form:
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Fundamentals of Smoothed 
Particle Hydrodynamics (SPH)
Corrections



Corrections

• X SPH
• Tensile instability



Corrections

• X SPH
• Tensile instability.

Increasing resolution
New kernels



Corrections

• X SPH
• Tensile instability.

Kernel incomplete near boundaries or near the free surface

• Kernel correction 
• Kernel Gradient correction

Increasing resolution
New kernels



Corrections

• X SPH
• Tensile instability.

Unnecessary
Unstable

Kernel incomplete near boundaries or near the free surface

• Kernel correction 
• Kernel Gradient correction

Increasing resolution
New kernels



Corrections

Density filters
• Shepard filter (0 order)
• MLS (1st order)

Others
• Shifting
• Delta- SPH



delta-SPH

The state equation describes a very stiff density field, and together with the 
natural disordering of the particles, high-frequency low amplitude oscillations are 
found to populate the density scalar field [Molteni and Colagrossi, 2009].

It’s a diffusive term to reduce density fluctuations

new term in the Continuity equation



Fundamentals of Smoothed 
Particle Hydrodynamics (SPH)
Boundary conditions



Now, let’s discuss boundaries in SPH.

When SPH was developed over 30 years ago, the technique was designed for 
astrophysics simulating galaxy formation, etc.

Up there (in space) there are no boundaries!!  They didn’t need to consider 
boundary conditions, but for engineering, all our simulations will have 
boundaries either open or closed (solid wall).

The immediate problem that presents itself is the old problem with the kernel-
there are no particles there!  A more philosophical Question is:  If there are 
no fluid particles in the wall, what role or function should any artificial 
particles take?



Solid Wall Boundary Conditions
There are 3 basic choices:

(i) Fluid Particles do not move & remain still.

We calculate           ,         but  v = 0 for all boundary particles

Advantages: Simple
Complex geometries can be represented easily

Disadvantages: Produces a very large Boundary Layer!
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Solid Wall Boundary Conditions
(ii) Repulsive Force

This can take various forms such as Lennard-Jones forces or an empirical 
function with a singularity so that the force increases as the particle nears the 
boundary

Advantages: Simple
Virtually avoids wall penetration

Disadvantages: Empirical!

• Repulsive force calculation 
• R(y) is infinite as the normalized 

distance from the wall y → 0



Solid Wall Boundary Conditions
(iii) Mirror Particles

When a real particle is close to a boundary then a virtual (ghost) particle is generated 
outside of the system, constituting the specular image of the incident one. 

Advantages: Most theoretically correct approach
Particles cannot penetrate since they would cross through 
themselves!

Disadvantages: Extremely difficult for any geometry other than a straight wall
Corners (and therefore vorticity) very difficult to get right

 

Boundary 

Interior fluid 
particles 

Mirror (ghost) particles 

mirror particles have the 
same density and pressure, 

but opposite velocity
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Mirror (ghost) particles







Boundary







Interior fluid particles













Solid Wall Boundary Conditions
PERIODIC OPEN BOUNDARIES

 

Missing kernel support 
for fluid particle i 

Periodic kernel support 
for fluid particle i 

 i 

Periodic lateral 
boundary 

Periodic lateral 
boundary 

Particles near an open lateral
boundary interact with the
particles near the
complementary open lateral
boundary on the other side of
the domain.

Area of influence for the particle extends beyond top lateral boundary and is
continued through periodic bottom boundary
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Periodic lateral boundary







Missing kernel support for fluid particle i







Periodic kernel support for fluid particle i
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Periodic lateral boundary













Floating objects

Each boundary particle that describes the moving object has velocity given by:

Movement 
of the body

The object is considered ad as rigid body.

The force on each boundary particle is calculated as the sum of the 
contributions of the water particles at a distance of the kernel length. 



Smoothed Particle Hydrodynamics
DISADVANTAGES comparing with other mesh-based CFD codes:

 The interpolation method used in SPH is very simple and it will be
strongly affected by particle disorder. SPH gives reasonable results for
the first order gradients, but they can be worse for higher order
derivatives.

 Turbulence treatment is still an open field and more research is needed.

 Boundary condition implementation is a hard task and fluid particles
penetration into boundaries must be avoided. There is no unanimity to
choose the best boundary conditions approach.

 Computation time is expensive compared with other meshbased methods
or CFD software.



Smoothed Particle Hydrodynamics

ADVANTAGES comparing with other mesh-based CFD codes:

 Efficient treatment of the large deformation of free surfaces since there is
no mesh distortion and no need for a special treatment of the surface

 Handling complex boundary evolution

 Distinguishing between phases due to holding material properties at each
individual particle

 Capable of being coupled with other mesh dependent and meshless
techniques



Smoothed Particle Hydrodynamics
ADVANTAGES comparing with other mesh-based CFD codes:



Smoothed Particle Hydrodynamics
ADVANTAGES comparing with other mesh-based CFD codes:



Smoothed Particle Hydrodynamics
ADVANTAGES comparing with other mesh-based CFD codes:



Smoothed Particle Hydrodynamics
ADVANTAGES comparing with other mesh-based CFD codes:

Can it be simulated with another numerical method???



www.dual.sphysics.org

Thanks for your attention
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