LABIMA — Laboratory of Maritime Engineering
Florence, 27t September 2018

The DualSPHYysics code

José Dominguez — Ephyslab - UVigo

00000000000000000000
.........................
.....................
..................
.................
................

UniversidajgVigo P g T

......................

DualSPHysics

DualSPHysics code

DualSPHysics

Video link:

https://youtu.be/pnLTWUk6wWPC

https://youtu.be/pnLTWUk6wPc

DualSPHysics code

GPUs: 32 x M2090 (BSC)
MPI: Dynamic balancing time i,
Algorithm: Symplectic & Wendland DualSPHysics

Particles: 265 Millions Video il n k:

Steps: 218,211

e https://youtu.be/kWS6-0Z jlo

Time: 38.3 s

https://youtu.be/kWS6-0Z_jIo

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)

2. DualSPHysics project
3. SPH formulation

4. DualSPHysics code
4.1. Source files
4.2. Object-Oriented Programming
4.3. Execution diagram

5. DualSPHysics implementation
5.1. CPU acceleration
5.2. GPU acceleration
5.3. Multi-GPU acceleration

1.1. Smooth Particle Hydrodynamics

PHYSICAL GOVERNING EQUATIONS

S

EULERIAN DESCRIPTION LAGRANGIAN DESCRIPTION
(spatial description) (material description)

COMPUTATIONAL METHODS

("

GRID-BASED METHODS

MESHFREE METHODS

MESHFREE PARTICLE METHODS
(particle represents a part of
the continuum domain)

SMOOTHED PARTICLE HYDRODYNAMICS

1.1. Smooth Particle Hydrodynamics

SPH method was invented for astrophysics during the seventies, but now it is
applied in many different fields including fluid dynamics and solid mechanics.

Fluid is represented using particles which move according to the governing
dynamics.

® © L) ® ® @
deesssdinese etesste s
R IAXIRH IR
©_.9.09,% "670%,.%20"0, ¢
e ler ..0.'::0.'0:0..:.:: oo
AR
0s0 e 0o, 0.0.. o® @ .o:.
0. 0% 0 %,°°9.0%0°% 0 %
20% %0 0%,00% %62 °0%0%0°%,
00%% 0%0 9.0 0% 050 .0 04,

Fluid R Particles

Comparing to grid-based methods, SPH interactions are carried out between a
given particle and its moving neighbours. Thus, these neighbours are
unknown since they change at each instant.

1.1. Smooth Particle Hydrodynamics

SPH method was invented for astrophysics during the seventies, but now it is
applied in many different fields including fluid dynamics and solid mechanics.

Fluid is represented using particles which move according to the governing
dynamics.

SPH is particularly suited to describe a variety of free-surface flows:

» Wave propagation over a beach.
* Plunging breakers.
» Wave-structure interactions.

« Solid bodies impacting on
water surface.

e Dam breaks.

1.2. Why is SPH too slow?

Drawbacks of SPH:

« SPH presents a high computational cost that increases when increasing the
number of particles.

« The simulation of real problems requires a high resolution which implies
simulating millions of particles.

-

The time required to simulate a few seconds is too large. One second of
physical time can take several days of calculation.

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

For example, a simulation of this dam break

300,000 particles Takes more than
&b 15 hours
1.5 s (physical time) (execution time)

Time: 0.15 s

Time: 0.45 s

Time: 0.75 s

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

For example, a simulation of this dam break

300,000 particles Takes more than
L 15 hours
- 1.5 s (physical time) (execution time)
because:

« Each particle interacts
with more than 250
neighbours.

Time: 0.45 s

Time: 0.75 s

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

For example, a simulation of this dam break

300,000 particles Takes more than
L » 15 hours
- 1.5 s (physical time) (execution time)
because:

« Each particle interacts
with more than 250
neighbours.

Time: 0.45 s

* At=10°-10% so more
than 16,000 steps are
needed to simulate 1.5 s
of physical time.

(NL)

{' Neighbor list J

Time: 0.75 s

System
Update (SU)

Particle
Interaction (PI) |~}

1.2. Why is SPH too slow?

Drawbacks of SPH:

« SPH presents a high computational cost that increases when increasing the
number of particles.

« The simulation of real problems requires a high resolution which implies
simulating millions of particles.

-

The time required to simulate a few seconds is too large. One second of
physical time can take several days of calculation.

IT IS NECESSARY TO USE HPC TECHNIQUES TO REDUCE THESE
COMPUTATION TIMES.

1.3. High Performance Computing (HPC)

HPC includes multiple techniques of parallel computing and distributed
computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:
* OpenMP (Open Multi-Processing)

— Model of parallel programming for systems of
shared memory.

— Portable and flexible programming interface
using directives.

Multi-core processor

— Its implementation does not involve major
changes in the code.

— The improvement is limited by the number of
cores.

OPENMP IS THE BEST OPTION TO OPTIMIZE THE PERFORMANCE
OF THE MULTIPLE CORES OF THE CURRENT CPUs.

1.3. High Performance Computing (HPC)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

« MPI (Message Passing Interface)

Message-passing library specification for
systems of distributed memory: parallel
computers and clusters.

Several processes are communicated by calling
routines to send and receive messages.

The use of MPI is typically combined with
OpenMP in clusters by wusing a hybrid
communication model.

Very expensive for a small research group.

MPI cluster

MPI IS THE BEST OPTION TO COMBINE THE RESOURCES OF

MULTIPLE MACHINES CONNECTED VIA NETWORK.

1.3. High Performance Computing (HPC)

HPC includes multiple techniques of parallel computing and distributed
computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

* GPGPU (General-Purpose Computing on Graphics Processing Units)

— It involves the study and use of parallel
computing ability of a GPU to perform general
purpose programs.

— New general purpose programming languages
and APIs (such as Brook and CUDA) provide
an easier access to the computing power of GPU
GPUs.

— New implementation of the algorithms used in
CPU is necessary for an efficient use in GPU.

1.3. High Performance Computing (HPC)

Central Processing Units (CPUs) vs. Graphics Processing Units (GPUSs)

« general purpose processor (any complex » designed for graphics rendering

calculations . : : .
) « designed for simple calculations that require

« designed for serial data processing high parallelism
» complex and large cores, so limited number simple cores, but large number of cores in
cores in one CPU one GPU

CPU GPU
Multiple Cores Thousands of Cores

1.3. High Performance Computing (HPC)

Theoretical GFLOP/s at base clock CUDA Programming Guide v9.1

=+=NVIDIA GPU Single Precision
9000 —+—NVIDIA GPU Double Precision
8500 =+=|ntel CPU Single Precision

#+—Intel CPU Double Precision

Graphics Processing Units (GPUs) “

 video game market boosted its
improvement .
« their computing power has increased

much faster than CPUs.

 powerful parallel processors

2005 2007 2009 2011 2013 2015

Advantages: GPUs provide a high calculation power with very low cost and without
expensive infrastructures.

Drawbacks: An efficient and full use of the capabilities of the GPUs is not
straightforward.

1.3. High Performance Computing (HPC)
Why GPUs?

GPUs are an accessible tool to accelerate SPH,
all numerical methods in CFD and any computational method

5X 18X 30X 36X
Digital Content Creation Video Transcoding 3D Ultrasound Gene Sequencing Molecular Dynamics
Adobe Elemental Technologies TechniScan U of Maryland U of Illinois, Urbana-Champaign

50X 80X 100X 146X 149X

MATLAB Computing Weather Modeling Astrophysics Medical Imaging Financial Simulation
AccelerEyes Tokyo Institute of Technology RIKEN U of Utah Oxford University

http://www.nvidia.com

http://www.nvidia.com/

1.3. High Performance Computing (HPC)

Rank

Why GPUs?

TOP500 LIST — JUNE 2018

https://www.top500.orqg/lists/2018/06/

System

Cores

Rmax

Rpeak

Power

(TFlop/s)

(TFlop/s)

(kW)

Summit - IBM Power System AC922, IBM POWERSY 22C 3.07GHz, NVIDIA Volta GV100,
Dual-rail Mellanox EDR Infiniband , IBM, DOE/SC/Qak Ridge National Laboratory
United States

2,282,544

122.300.0

187.659.3

8,806

[§%]

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC,
National Supercomputing Center in Wuxi
China

10,649,600

93,014.6

125,435.9

15,371

Sierra - IBM Power System S922L.C, IBM POWERS 22C 3.1GHz, NVIDIA Volta GV100,
Dual-rail Mellanox EDR Infiniband , IBM, DOE/NNSA/LLNL
United States

1,572,480

71,610.0

119.193.6

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-
2000 , NUDT, National Super Computer Center in Guangzhou

AR
China

4,981,760

61,444.5

100,678.7

18,482

AT Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2550 M4, Xeon Gold 6148
20C 2.4GHz, NVIDIA Tesla V100 SXM2. Infiniband EDR , Fujitsu
National Institute of Advanced Industrial Science and Technology (AIST)

Japan

Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries intercon., NVIDIA Tesla P100,
Cray Inc., Swiss National Supercomputing Centre (CSCS)
Switzerland

Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x ,
Cray Inc., DOE/SC/Qak Ridge National Laboratory
United States

391,680

361,760

560,640

19.880.0

19,590.0

17,590.0

32,576.6

25,326.3

27,1125

1,649

2272

8,209

https://www.top500.org/lists/2018/06/

1.3.

High Performance Computing (HPC)

Why GPUs? GREENS500 LIST — JUNE 2018

Rank

https://www.top500.0rg/green500/lists/2018/06/

TOP500 Rmax Power Power Efficiency.
Rank System. Cores. (TElop/s) (kW) (GFElops/watts)
359 Shouby system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz. Infiniband EDR. PEZY-SC2, 794,400 8576 47 18.404

PEZY Computing / Exascaler Inc., Advanced Center fgr Computing
Japan

2 419 Suiren?2 - ZettaScaler-2.2. Xeon D-1571 160 1 3GHz nfiniband EDR PEZY SC2 , PEZY 762,624 798.0 47 16.835
Computing / Exascaler Inc, Hioh Eneray Accelerafor Research Qraanizalion
Japan

3 385 a - ZettaScaler-2 2, Xeon F5-2618Lv3 8C 2 3GHz, Infiniband - 794,400 8247 50 16.657
Computlng ! Exascaler Inc., PEZY Computing K K.
Japan

(4 227 DGX SaturnV¥ Volta - NVIDIA DGX-1 Volta3d6. Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, 22,440 1,070.0 97 15.113)

NVIDIA Tesla V100 , Nvidia, NVIDIA Corporation
United States.

5 1 ummlt IBM Power System AC922. IBM POWERS 22C 3. UTGHZ NVIDIA Volta GV100. Dual- 2,282 544 1223000 8,806 13.889

Asllangx nfiniband , IBM, DOE/SC/Qak Ridge National Laborator

6 19 TSUBAMES3.0 - SGI ICE XA, IP139-SXM2 E5- 2680v4 14C 2 4GHz, Intel 135,828 86,1250 792 13.704
NVIDIA Tesla P100 SXM?2 , HPE, GSIC Center, Tokvo Insfifute
Japan

7 287 AIST Al Cloud - NEC 4U-8GPU Server, Xgon E5-2630Lv4 10C 1.8GHz, |nfin qug 23,400 961.0 76 12.681
NVIDIA Tesla P100 SXM?2 , NEC, National Instituie of Adyanged Industrial Scienge a Ig;uugjggg

8 6]] : ire ABCI] - PRIMERGY CX2550 M4 Xeon Gold 6148 20C 391,680 19,860.0 1,649 12.054

9 255 19,440 1,018.0 86 11.865

10 171 35,360 1,213.0 107 11.363

. J

https://www.top500.org/green500/lists/2018/06/

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)

2. DualSPHysics project
3. SPH formulation

4. DualSPHysics code
4.1. Source files
4.2. Object-Oriented Programming
4.3. Execution diagram

5. DualSPHysics implementation
5.1. CPU acceleration
5.2. GPU acceleration
5.3. Multi-GPU acceleration

2. DualSPHysics project
The DualSPHysics code was created starting from SPHysics.

DEVELOPED JOINTLY BY
RESEARCHERS AT

MANCH !_\; [iER

Johns Hopkins Universidade de University of
University Vigo Manchester
(USA) (Spain) (UK)

SPHysics is a numerical model SPH developed for the study of free-surface problems.

It is a code written in Fortran90 with numerous options (different kernels, several
boundary conditions,...), which had already demonstrated high accuracy in several
validations with experimental results... but it is too slow to apply to large domains.

2. DualSPHysics project

A - -

00000000 00000000,
400000000000 00000000000
“200000000, 200000000~ "
900000000. 40000000F

- 9000000000000 0000006
«00000000000000000000.

DualSPHysics

Why two implementations?

First version in late 2009.

It includes two implementations:
- CPU: C++ and OpenMP.
- GPU: CUDA.

Both options optimized for the best
performance of each architecture.

This code can be used on machines with GPU and without GPU.

It allows us to make a fair and realistic comparison between CPU and GPU.

Some algorithms are complex and it is easy to make errors difficult to detect. So they are

implemented twice and we can compare results.

It is easier to understand the code in CUDA when you can see the same code in C++.

Drawback: It is necessary to implement and to maintain two different codes.

2. DualSPHysics project

DuaISPHyS|cs
DSPH project includes:
Geometry (cad, 3ds, Configuration
dwg, stl, vtk..) (parameters motion...)
Pre—processing DualSPHysics Post-processing
tools solver tools
Result analy5|s V|suaI|zat|on
(Data in csv, xIs, m...) (videos, images, graphs)
Pre-processing tools: DualSPHysics solver: Post-processing tools:
« Converts geometry into * Runs simulation using » Calculates magnitudes using
particles. SPH particles. particle data.
* Provides configuration * Obtains data simulation Generates images and
for simulation. for time intervals. videos starting form SPH

particles.

200000000, 400000000,

2. DualSPHysics project & v
DualSPHysics DualSPHysics

FAQ References Downloads Validation Animations SPHysics GPU Computing

Developers Contact News Forums

UniversidagaVigo MANCHESTER

1824

The University of Manchester

DualSPHysics is based on the Smoothed Particle Hydrodvnamics model

named SPHysics (www.sphysics.org).

The code is developed to study free-surface flow phenomena where Eulerian
methods can be difficult to apply, such as waves or impact of dam-breaks on
off-shore structures. DualSPHysics is a set of C++, CUDA and Java codes

designed to deal with real-life engineering problems.
Contact E-Mail: dualsphysics@gmail.com

Youtube Channel: www.youtube.com/user/DualSPHysics

Twitter Account: @DualSPHysics

www.dual.sphysics.orqg

2. DualSPHysics project

200000000 00000000
4000000000006 00000000000
400000000 400000000~
(1] (1]

000
........I.........
000000000000 00000000.

DualSPHysics / l\.

Universidade de

Vigo
(Spain)

DEVELOPED JOINTLY BY

RESEARCHERS AT

24000000006, 2900000000,
400000000000, ,00000000000~
eoe °

cpu i L
DualSPHysics

and many contributors

Dr Benedict D. Rogers
Dr Athanasios Mokos
Dr Georgios Fourtakas
Prof. Peter Stansbhy
Alex Chow

Annelie Baines

MAN(H!\\ IlER
1.2+

Prof. Moncho Gémez Gesteira
Dr Alejandro J.C. Crespo
Dr José M. Dominguez

Universityof ot
h[anchester Andrés Vieira
(UK)

Prof. Rui Ferreira

Dr Ricardo Canelas
Moisés Brito

www.dual.sphysics.org

Dr Corrado Altomare
Dr Tomohiro Suzuki
Tim Verbrugghe

Dr Renato Vacondio
(L Prof. Paclo Mignosa

Dr Xavier Gironella
Dr Andrea Marzeddu

oooooooooooooooooooo
....................
ooooooooooooooo

oooooooooo

2. DualSPHysics project cpu HHHEHE gpu

oooooo

DljgiSPHysics
People working on DualSPHysics project:

Dr Benedict D. Rogers
Dr Athanasios Mokos
Dr Georgios Fourtakas

Prof. Peter Stansby flanders ¥ Dr Corrado Altomare
Alex Chow HYDRAULICS RESEARCH Dr Tomohiro Suzuki

Tim Verbrugghe

Annelie Baines

NIVERSITEI

Prof. Moncho Gémez Gesteira
Dr Alejandro J.C. Crespo

Dr José M. Dominguez

Dr José Gonzalez Cao
Orlando G. Feal

Andrés Vieira

Dr Renato Vacondio
1 Prof. Paolo Mignosa

UniversidaggVigo

@ UNIVERSITAT POLITECNICA Dr XaVier Girone”a
DE CATALUNYA
Dr Andrea Marzeddu

Prof. Rui Ferreira @ TECNICO LISBOA
Dr Ricardo Canelas

Moisés Brito /p__._ M

ooooooooo
ooooooo
~eaoe

2. DualSPHysics project cpu i
Du;I.SPHysics

Dr Benedict D. Rogers
Dr Athanasios Mokos
Dr Georgios Fourtakas
Prof. Peter Stansby
Alex Chow

Annelie Baines

| MANCHESIER ~
TR Dr Corrado Altomare
HYDRAULICS RESEARCH Dr Tomohiro Suzuki

Tim Verbrugghe
“ NIVERSITEI
Prof. Moncho Gomez Gesteira

.
Dr Alejandro J.C. Crespo

é ingue W ; i\ UNIVERSITA | Dr Renato Vacondio
Dr José M. Dominguez Universidagyigo " (§a

] DEGLI STUDI .
Dr José Gonzalez Cao &/ DI PARMA I Prof. Paolo Mignosa
Orlando G. Feal

ag {
Andreés Vieira \K{
TSITAT OLITECNICA
T Y

Dr Xavier Gironella
Dr Andrea Marzeddu

Prof. Rui Ferreira @ TECNICO LISBOA
Dr Ricardo Canelas

Moisés Brito /_VL-:_WM
It has been downloaded and used by researchers but also by companies:
NASA JSC, BAE Systems, Volkswagen AG, McLaren Racing Ltd, Forum NOKIA,
NVIDIA, AECOM, HDR Engineering, ABPmer, DLR, Maine Marine Composites,
CFD-NUMERICS, BMT Group, Oak Ridge National Laboratory, Rainpower
Norway, American Wave Machines,, National Renewable Energy Laboratory in
U.S.A., Atria Power Corporation Ltd., Global Hydro Energy, Carnegie Wave

Energy Ltd, etc.

2. DualSPHysics project - Download

DualSPHysics Package
http://dual.sphysics.org

DualSPHysics Code on GitHub (since v4.2)

https://github.com/DualSPHysics/DualSPHysics

A =) = O
/ 3¢ DualSPHysics: GPUand € X\ \
& Cc 0O | © dual.sphysics.org/index.php/downloads/ Q |
DualSPHysics FAQ References idat i SPHysics GPU Computing

Features WIKI GUI Visualization Developers Contact Forum News

Downloads Software:

CUDA Toolkit

GITHUB Repository

The code of the package is also available on GITHUB:

htp: hub.com/DualSPHysics/Dual

GITHUB only contains the source code of v4.2, some tools and examples and it
will be employed for more frequent updates of the code with new

functionalities and fixed bugs (pac

DualSPHysics Updates

The official package will be updated when there are important changes or fixes.
The last update was on 4 June 2018.

DualSPHysics Package

Please, fill this form in order to receive the download links:

Name:

Organization :

Commercial use or research :

Area of expertise : |

Country : Span v
E-mail :

Latest version
DualSPHysics_v£.2.zip

Previous versions
DualSPHysics_v4.0_Windows_x64.zip
DualSPHysics_v4.0_Linux_x64.tar.gz
DualSPHysics_v4.0_Documentation.zip
DualSPHysics_v3.2_Windows_x64.zip
DualSPHysics_v - .82
DualSPHysics_v3.1_Windows_x64.zip
DualSPHysics_v3.1_Linux_x64.tar.gz
DualSPHysics_v

_Documentation.zip

) DualSPHysics/DualSPHy:= X \

& C 0N ‘ 8 GitHub, Inc. [US] | https://github.com/DualSPHysics/DualSPHysics Q 1}‘ S

[DualSPHysics / DualSPHysics @urvatchv | 14 | | Winstor | 23 | | Fork | 18

< Code ssues 4 Pull reg

Projects 0 Wiki Insights

C++/CUDA/CpenhP based Smoothed Particle Hydredynamics (SPH) Solver

114 commits 2 branches 10 releases 285 convributars 4 LGPL-21
Branch: master v New pull request Create new file Upload files | Find file
@ rociand e README.imd! Latest commit 1cbbdaz 12 days age

. bin project and makfies

ual Studio project and makfies fo

branch ‘dev

[gitignore default is fixed

[E) CONTRIBUTING.md Added re

s_DualSPHysics_vd 2 pdf Updates exam

and cther min;

7] UcENsE Created LIC
[E] READMEmd Update README md
[l chpermissions sh Upd: amples usi

5 READMEmd

cpu 9Py

DualSPHysics
DualSPHysics

DualSPHysics is based on the Smoothed Particle Hydrodynamics model named SPHysics.

The code is developed to study free-surface flow phenomena where Eulerian methods can be difficult to apply, such as
waves or impact of dam-breaks on off-shore structures. DualSPHysics is a set of C++, CUDA and Java codes designed to
deal with real-life engineering problems.

Instructions for regular users

IFyou only want 3 copy of DualSPHysics to create and run cases in your system, you probably want the full DualSPHysics
package from the official website. There you will find documentation and packages of different versions for different
Operating Systems.

It is possisle that you want the latest version in this repository that is not yet uploaded in the official web page. In this case
check the Building the project section to build an executable.

Have in mind that DualSPHysics needs a case already created to execute the SPH solver, so you need to use GenCase, which is
included the main package en the DuzlSPHysics webpage.

If vou need helo check gut the wiki for this orolect

http://dual.sphysics.org/
https://github.com/DualSPHysics/DualSPHysics

2. DualSPHysics project - Download

DualSPhysics Package v4.2

examples

Linux & Windows
executables

Documentation

Full examples

Source code

Linux & Windows executables:

Pre-processing:

* GenCase4

SPH solver:

* DualSPHysics4.2

* DualSPHysics4.0_LiquidGas

* DualSPHysics3.4_LiquidSediment

Post-processing (visualization):

* PartVTK4

* PartVTKOut4

* IsoSurfaced4

Post-processing (calculations):
BoundaryVTK4
ComputeForces4
Floatinginfo4
FlowTool4
MeasureTool4

2. DualSPHysics project - Download

DualSPhysics Package v4.2

examples

Linux & Windows
executables

Documentation

Full examples

Source code

Documentation (guides and other help files) :

Pre-processing:

* XML_v4.0_GUIDE.pdf

* ExternalModelsConversion.pdf
SPH solver:

* DualSPHysics_v4.2_GUIDE.pdf

* DualSPHysics_v4.0_LiquidGas_GUIDE.pdf
Post-processing:

* PostprocessingCalculations_v4.2.pdf

Help of executables

XML Templates for configuration

2. DualSPHysics project - Download

DualSPhysics Package v4.2 Full examples (also pre-processing & post-processing):

DamBreak WaveMaker Floating

Linux & Windows

executables Periodicity WavesFlap FloatingWaves

MovingSquare WavesPiston

Documentation

ExternalForces WavesPistonAWAS

examples Full examples

SloshingTank WaveMakerFile Pouseuille

N\
J

Source code

7
\

Full examples - LiquidSediment & LiquidGas:

Obstaclelmpact
SloshingTank WetDambreak
2 I

Dambreak

2. DualSPHYysics project - Download

DualSPhysics Package v4.2 Source code ready to compile:

Codes:
Linux & Windows DualSPHysics v4.2
executables » DualSPHysics v4.0 LiquidGas
) . * ToVTK (data usage example)
Documentation Precompiled libraries:
.) * Linux (gccd & gccb)

* Windows (Visual Studio 2015)
Compiling:

* Makefiles for Linux

* Project for Visual Studio 2015
* CMake file

examples Full examples

Source code

2. DualSPHYysics project - Download

DUALSPHYsSICS V1.2 (2011) DUALSPHYSICS - ALL VERSIONS
Downloads: 701 (65% Windows) Downloads: 22,278 (70% Windows)

DUALSPHYsSICS V2.0 (2012)
Downloads: 6,472 (71% Windows)

DUALSPHYsSICS V3.0 (2013)
Downloads: 6,982 (73% Windows)

B Linux

m Windows

DUALSPHYsICcSs V4.0 (2016)
Downloads: 7,072 (72% Windows)

DUALSPHYsSICS V4.2 (May 2018)
Downloads: 1051
GitHub downloads: ??7?

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)

2. DualSPHysics project
3. SPH formulation

4. DualSPHysics code
4.1. Source files
4.2. Object-Oriented Programming
4.3. Execution diagram

5. DualSPHysics implementation
5.1. CPU acceleration
5.2. GPU acceleration
5.3. Multi-GPU acceleration

3. SPH formulation: DualSPHYysics v4.2

Time integration scheme:
- Verlet [Verlet, 1967]
- Symplectic [Leimkhuler, 1996]

e Variable time step [Monaghan and Kos, 1999]

e Kernel functions:
- Cubic Spline kernel [Monaghan and Lattanzio, 1985]
- Quintic Wendland kernel [Wendland, 1995]
- Gaussian kernel

e Density treatment:
- Delta-SPH formulation [Molteni and Colagrossi, 2009]

e Viscosity treatments:
- Atrtificial viscosity [Monaghan, 1992]
- Laminar viscosity + SPS turbulence model [Dalrymple and Rogers, 2006]

o \Weakly compressible approach using Tait’s equation of state

3. SPH formulation: DualSPHYysics v4.2

Shifting algorithm [Lind et al., 2012]

e Dynamic boundary conditions [Crespo et al., 2007]

e Floating objects [Monaghan et al., 2003]

e Periodic open boundaries [GOmez-Gesteira et al., 2012a]

e Coupling with Discrete Element Method (DEM) [Canelas et al., 2016]

e External body forces [Longshaw and Rogers, 2015]

e Double precision [Dominguez et al., 2013c]

e \Wave generation [Biesel and Suquet, 1951; Madsen, 1971; Liu and Frigaard, 2001]
e Piston- and flap-type long-crested second-order wave generation

e Passive and Active Wave Absorption System [Altomare et al., 2017]

e Multi-phase (soil-water) [Fourtakas and Rogers, 2016] — executable only

e Multi-phase (liquid-gas) [Mokos et al., 2015]

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)

2. DualSPHysics project
3. SPH formulation

4. DualSPHysics code
4.1. Source files
4.2. Object-Oriented Programming
4.3. Execution diagram

5. DualSPHysics implementation
5.1. CPU acceleration
5.2. GPU acceleration
5.3. Multi-GPU acceleration

5. DualSPHysics implementation

For the implementation of SPH, the code is organised in 3 main steps that are repeated
each time step till the end of the simulation.

Neighbour list (NL):
Particles are grouped in cells and reordered to
optimise the next step.

. : Particle interactions (PI):
Neighbour List) .
{ (NL)] Forces between particles are computed, solving

momentum and continuity equations.

J /& This step takes more than 95% of execution
time.

Particle ﬁ> System System update (SU):
Interaction (PI) Update (SU) Starting from the values of computed forces, the
@ magnitudes of the particles are updated for the

occasionally)

next instant of the simulation.
[Save Data }
(

5.2. GPU acceleration

Full GPU implementation

« DualSPHysics was implemented using the CUDA programming language to run
SPH method on Nvidia GPUs.

* GPU is used in all steps (Neighbour List, Particle Interaction and System Update).

« This approach is the most efficient since:
« All particle data is kept in GPU memory and the transfers CPU-GPU are removed.

* Neighbour List and System Update are parallelized, obtaining a speedup also in this
part of the code.

(») Initial Data
Initial Data

J/ <L
‘\U"' Data transfer
CPU-GPU
Neighbour List | =
; ‘ (NL) ‘ GPU
\/? o _/ Neighbour List
("Data transfer) A= o
|\ CPU-GPU) AN
~————— GPU A\
Particle { \
\lnteractlon (PI)/ Particle System
— e Interaction (P1) Ij\> Update (SU)
(Data transfer | [\ System
|\.,_M_/‘ —l/]\ Update (SU)
1 GPU-CPU
~—
!”‘- \
Save Data Save Data
| ionall
.A\V(DCC35|0n3 V)/ (occasionally)

5.2. SPH implementation: CPU acceleration

Testcase for results

« Dam break flow impacting on a structure (experiment of Yeh and Petroff at the
University of Washington).

» Physical time of simulation is 1.5 seconds.

Obstacle

Time: 03 s Time:05s

040m A

B
DASw 0.40 m
030m

s 4 v

0.90m 0.12m 0.58 m

Time: 0.8 s Time: 1.2 s

4 0.67m
.l 0.12m
10.24 m
v

1M particles - Velocity

Time: 0.44 s

Video link:
https://youtu.be/ OFsAVuwxaA

https://youtu.be/_OFsAVuwxaA

5.2. GPU acceleration: Results

Runtime for CPU and different Speedups of GPU against CPU
simulating 1 million particles.

GPU cards.
150

i / /

. | Titan X is 3.3 times faster than GTX Titan
il i using single precision

120
—

Runtime (h)

Tesla P100 1s 5.3 times faster than GTX Titan

1 1c1 I
) using double precision A
:I' 7 24
ll' GTX Titan H vs CPU Single-core 82 102 105 149
0
0 4,000,000 N 8,000,000 12,000,000

After optimising the performance of DualSPHysics on CPU and GPU...

The most powerful GPU (GTX Titan) is 149 times faster than CPU (single core execution)
and 24 times faster than the CPU using all 8 cores.

5.2. GPU acceleration: Results

40

32

24

16

The simulation of real cases implies huge domains with a high resolution, which
implies simulating tens or hundreds of million particles.

The use of one GPU presents important limitations:
- Maximum number of particles depends on the memory size of GPU.
- Time of execution increases rapidly with the number of particles.

Maximum number of particles (millions) Runtime (hours)
20

= GTX480

6 | =™ GTX680
== GQTXTitan
12
8
4
. O

0 2 4 6 8 10 12 14 16 18 20
GTX480 GTX 680 TeslaK20 TeslaM2090 GTXTitan . .
Particles (millions)

5.3. Multi-GPU implementation

MPI is used to combine resources of multiple machines connected via network.

The physical domain of the simulation is divided among the different MPI processes.
Each process only needs to assign resources to manage a subset of the total amount of
particles for each subdomain.

CPU CPU
6 cores

OpenMP 6 cores
- HER «
HER

l; 3

GPU GPU
CUDA 480 cores 480 cores

CPU
6 cores
HER
HER

Ph

MPI

5.3. Multi-GPU implementation

The use of MPI implies an overcost:
- Communication: Time dedicated to the interchange of data between processes.
- Synchronization: All processes must wait for the slowest one.

Solutions:

- Overlapping between force computation and communications: while data is
transferred between processes, each process can compute the force interactions among its
own particles. In the case of GPU, the CPU-GPU transfers can also be overlapped with
computation using streams and pinned memory.

- Load balancing. A dynamic load balancing is applied to minimise the difference
between the execution times of each process.

5.3. Multi-GPU implementation

Dynamic load balancing

Due to the nature Lagrangian of the SPH method, is necessary to balance the load
throughout the simulation.

FIRST approach according to the number of fluid particles

The number of particles must be redistributed after some time steps to get the
workload balanced among the processes and minimise the synchronisation time.

SECOND approach according to the required computation time of each device

Enables the adaptation of the code to the features of a heterogeneous cluster
achieving a better performance.

GPUs: 3 x GTX480 i, il

MPI: Dynamic Balancing-Np G
Particles: 6 Millions DualSPHysics
Steps: 42,624

Runtime: 2.6 hours

Time: 0.53 s

5.3. Multi-GPU: Performance

Barcelona
Supercomputing
Center

Efficiency close to 100% simulating 4M/GPU @ Conter
with 128 GPUs Tesla M2090 of BSC. Time: 0.3 s

This is possible because the time dedicated to
tasks exclusive of the multi-GPU executions
(communication between processes, CPU-GPU
transfers and load balancing) is minimum.

Speedup - Weak scaling

128 e 1 M /G pU T(N N
4M/Gpu S(N): (ref)'

96 8M/Gpu T(N)) Nref
......... Ideal

. SRR

32

0
0 32 64 96 128

GPUs

5.3. Multi-GPU: Large simulations

Simulation of 1 billion SPH particles

Large wave interaction with oil rig using 109 particles

11.95m»

6.10m

L

12.50m

dp=6cm, h=9cm

np = 1,015,896,172 particles

nf = 1,004,375,142 fluid particles
physical time= 12 sec

of steps = 237,065 steps
runtime = 79.1 hours

using 64 GPUs Tesla M2090 of the BSC-CNS

GPUs: 64x M2090 (BSC)

MPI: Dynamic balancing

Algorithm: Verlet & Wendland

Particles: 1,015 Millions I
Steps: 137,055

Runtime: 79.1 hours
Physical time: 12 seconds

Video link:
https://youtu.be/BEMPIE75D08

;\ . > : N : ‘ X \'\Q'
.L..‘ B\ L ‘ .
i B Time: 3.36 s
g
y
i,
’ , =7 1\\; AL
) 4 e ! G g Dion ™
q - 0 T
= ;& g -
- gyt® oL
B 0 - N N —e .)
Bsc : 0 D . | g E
&2 ~ 3 2 M .

https://youtu.be/B8mP9E75D08

5.3. Multi-GPU: Large simulations

Simulation of a real case
Using 3D geometry of the beach Itzurun in Zumaia-Guipuzcoa (Spain) in Google Earth

32 x M2090 (BSC)

Particles: 265 Millions
Physical time: 60 seconds
Steps: 218,211
Runtime: 246.3 hours

Portugal'\fj . ES-,:p_aﬁa
| (Spalin) Albacete

htts://outu.be)nDKi}RA hEA‘.
https.//youtu.be/kWS6-0Z jlo

32 x M2090 (BSC) Particles: 265 Millions Physical time: 60 seconds Runtime: 246.3 hours

https://youtu.be/nDKlrRA_hEA
https://youtu.be/kWS6-0Z_jIo

5.3. Multi-GPU: New approach

Consumers can now easily purchase desktop machines or a single
compute node with 4-8 GPUs for only a few thousand euros.

A\ g

New Multi-GPU code optimized for Multi-GPU machines

CUDA (and OpenMP), not MPI

Only for several GPUs in the same machine
Typical clusters have 2, 4 or 8 GPUs

Simulations with 100-200M particles
120M using 4x GTX Titan (6GB)

5.3. Multi-GPU: New approach

Consumers can now easily purchase desktop machines or a single
compute node with 4-8 GPUs for only a few thousand euros.

$

New Multi-GPU code optimized for Multi-GPU machines

CUDA (and OpenMP), not MPI

Only for several GPUs in the same machine
Typical clusters have 2, 4 or 8 GPUs

Simulations with 100-200M particles
120M using 4x GTX Titan (6GB)

5.3. Multi-GPU: New approach

....................
..........................
.....................
...................
..................

cpyY
/ DuaISPHy5|cs .
One GPU card / GPU clusters /esktop/smgle node G\

CPU

OpenMP 6 cores
]
[|]| |

=

GPU
CUDA 480 cores

S,

CPU CPU

8 cores 8 cores
OpenMP
[[[]] [[[]

o

2011-today since 2012 2019
Release of Simulations on To be released as
open-source code Supercomputing open-source code

Centers (BSC)

Thank you for your attention

sandidies, Lssbiiess.

DualSPHysics

Environmental
Physics
Technologies

EPH

V|deo I|nk
https://youtu.be/EVSDERTJToQ

https://youtu.be/EvSDFRfJToQ

