
Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Università degli Studi di Firenze, 18-19 April 2012

WAVE ENERGY UTILIZATION

António F. O. Falcão

Instituto Superior Técnico, Universidade Técnica de Lisboa

Part 5 Wave Energy Situation and Perspectives

- The Present Situation.
- Costs.
- Challenges, Risks and Barriers.
- Public Policies.

A few basic concepts:

- Oscillating water column (OWC)
- "point absorber"
- large oscillating-body (multi-body)
- run-up device, ...

A large number of designs (>50) of which a few (≈15 ?) reached (or are close to) the prototype stage.

<u>Slow</u> convergence to a small number of basic designs.

The extensive exploitation of the wave energy resource by large farms of offshore devices.

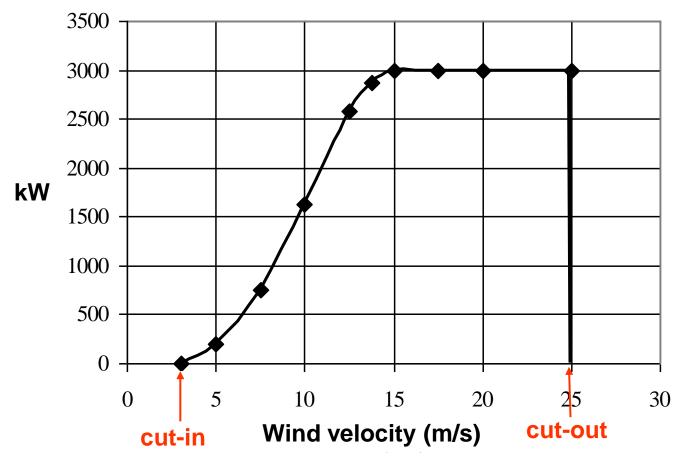
The technology is more difficult than wind.

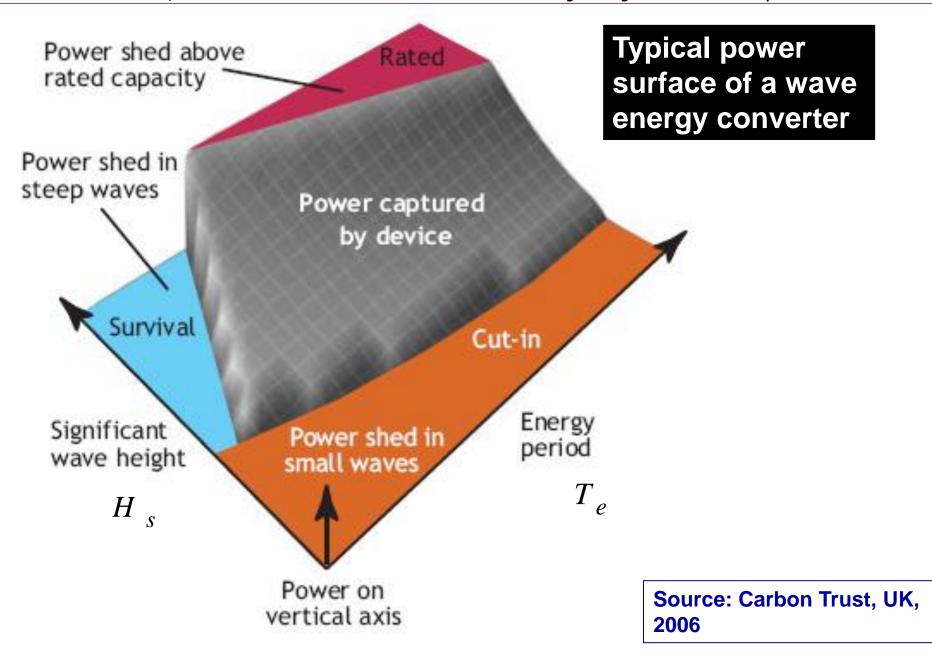
From the development and economic point of view, the situation is similar to wind in the 1980s ?

Except for a few shoreline OWCs (Pico 1999, Islay 2000), there is little or no experience of maintenance, reliability and survival (under extreme conditions) in real open-ocean, for more than a few months.

Scarce reliable information on costs and economics.

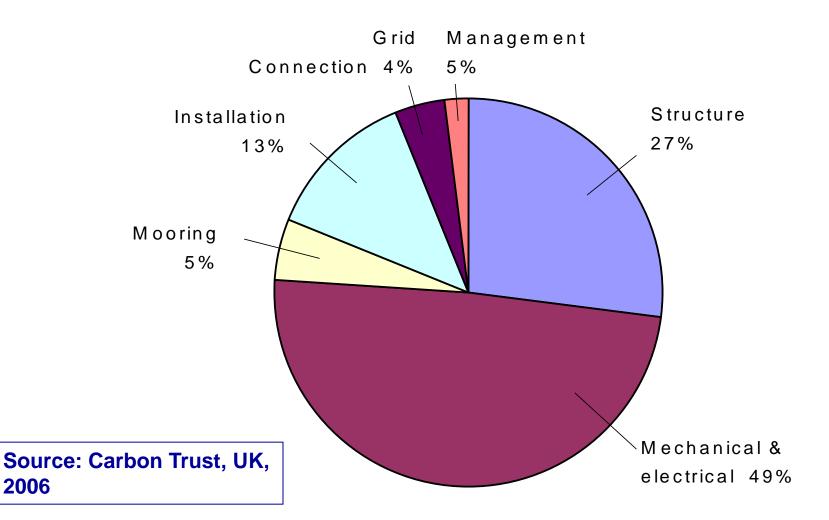
Often, what is advertised by development teams is based on scenarios and projections assuming cost reductions.


For most technologies, the <u>capacity factor</u>: annual-averaged power divided by rated power, is similar to wind (~0.3) (possibly larger in the **southern hemisphere** due to smaller seasonal variations).


At the present stage of technology development, the unit cost of electricity from waves ranges **between wind and large photovoltaics.**

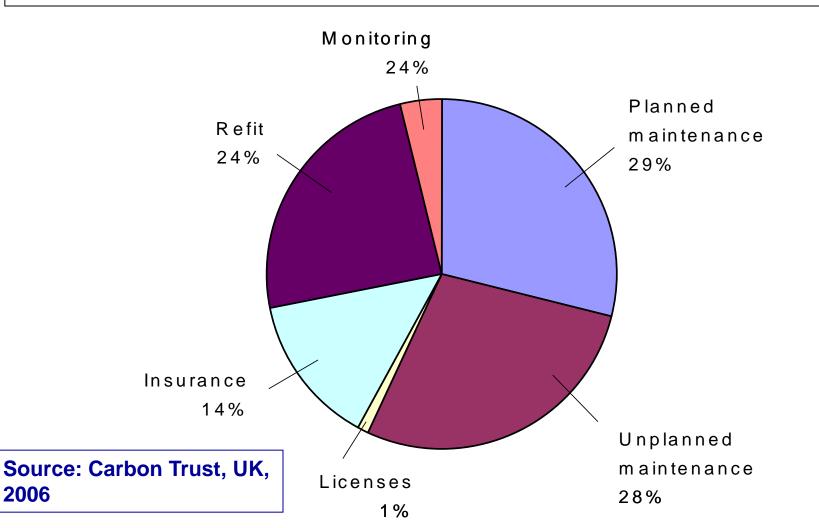
In order to be competitive with onshore wind, a cost reduction factor of about 3 will be required for the best designs (2 or less if compared with offshore wind).

The relatively large investments from private companies in wave technology (especially in Europe) indicate that such cost reductions are believed to be feasible (within 10+ years?).



Costs

Typical breakdown of capital costs for a wave farm



2006

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Costs

Typical breakdown of operation & maintenance costs for a wave farm

Costs

Capital costs of first prototypes and first production models

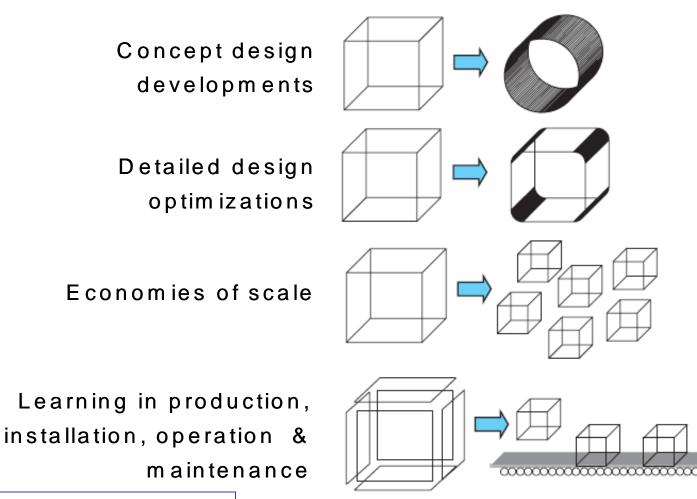
First prototype: 6 – 13 k€/kW

First production model: 2 – 6 k€/kW

Cost of energy at present stage of development, small farms up to 10 MW, rate of return 15%

Range of estimates 0.20 – 0.60 €/kWh

Central estimates 0.32 – 0.36 €/kWh


Lowest costs for shoreline and nearshore OWCs (possibly in breakwaters) ?

Source: Carbon Trust, UK, 2006

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Costs

How to reduce costs of energy from waves

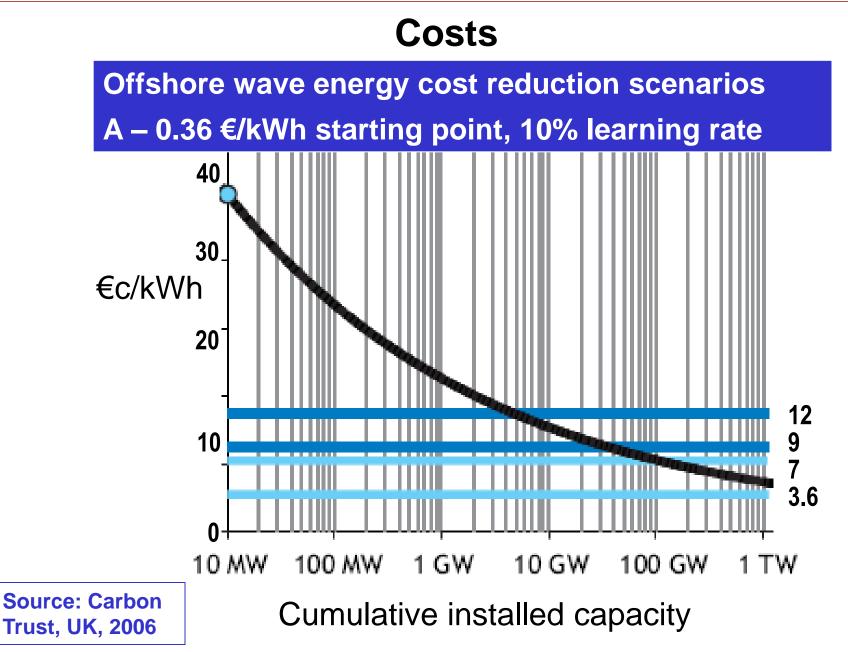
(Source: Carbon Trust, UK, 2006)

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Costs

Scenarios for cost reductions

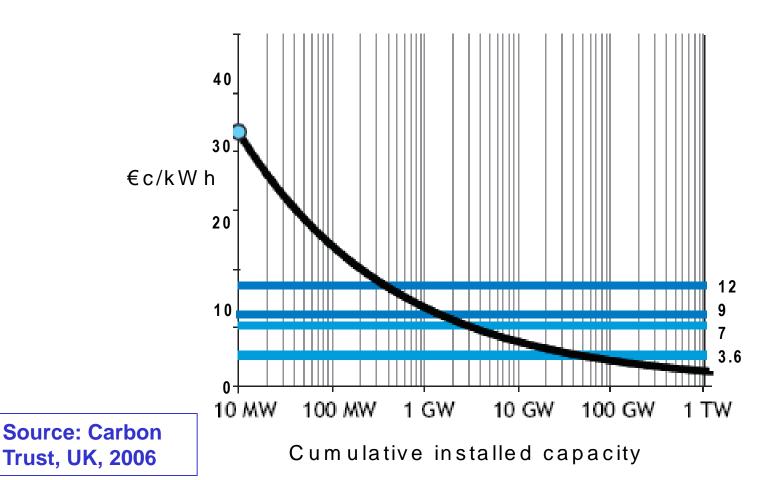
(based on the evolution of other technologies)


Based on :

- Initial unit cost of produced electrical energy (€/kWh).
- <u>Learning rate</u>: percentage decrease in cost each time installed power capacity is doubled.

Scenario A "pessimistic": initial 0.36 €/kWh learning rate 10%

Scenario B "optimistic": initial 0.31 €/kWh learning rate 15%


Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Costs

Offshore wave energy cost reduction scenarios

B – 0.31 €/kWh starting point, 15% learning rate

Challenges, risks and barriers

Challenge:

• Develop robust and competitive technologies supported by standards and best practices.

<u>Risks:</u>

- Higher than expected development, capital and operational & maintenance costs.
- Less energy production or lower energy tariff.
- Negative environmental impact and conflicts of uses higher than expected at very large scale utilization.

Challenges, risks and barriers

Barriers:

- No electrical grid access.
- No room in the energy mix.
- Administrative processes long and UNPREDICTABLE (Licensing, Grid Access, Public Funds, Tariffs).
- No or limited access to relevant data (waves, winds, currents, type of bottom...) in a proper format.

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Challenges, risks and barriers

Classes of non-techn. barriers, typical examples Mitigation mechanisms Sea use Operation/ feed-Unclear and Regulatory in license license too many Issues duration duration competences Lack of No Financial Inappropriate Capital appropriate Incentives energy costing grants Feed-in tariff Policy & methods Admin. Lack of Lack of Limited Infrastructure specialised skilled arid support

Public Policies

- Define targets and clear strategies. Infrastructures and logistics. Financial incentives. Simplification of licensing procedures.
- Access to the electrical grid.
- Access to field data.
- **Promote internal market:**
 - Feed-in tariff
 - Define internal market (% of energy mix)

Public Policies Targets

• Act as a motor for other policies that could favour/be necessary to achieve the established target.

• Give confidence for technology developement and investements.

Country	Energy	2010	2020
Ireland	Ocean energy	-	500 MW
UK (Scotland)	Ocean energy	-	700 MW
Spain (Basque Country)	Wave energy	5 MW	-
Portugal	Wave energy	50 MW (?)	200 MW

Public Policies

Clear strategies

Largely different strategies among European countries

Country	Strategy	Main tools
Portugal	Attract investors.	Portuguese Pilot Zone.
	Develop national market.	Feed-in tariff.
	Develop natl technologies.	
Ireland	Develop national devices.	4-step strategy
υκ	Develop national devices.	EMEC – WaveHub.
		Supergen, Marine Energy
		Challence.
		Others.
Spain	Develop national devices.	PSE-MAR, BIMEP.
France	In construction	Tariff and Pilot Zone.

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies

Financial incentives: feed-in tariffs in Europe

Country	Tarif	f (€/kWh)	
Portugal	0.26 -0.07		
France		0.15	
Spain	first 20 years	0.0689(+0.0384)	
	next	0.0651(+0.060)	
Denmark	first 10 years	0.08	
	next	0.053	
Germany	0.1 to 0.07		
UK	market price + ROC		
Ireland	0,2 *		
Norway	-		

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies

Infrastrutures and logistics: initiatives in Europe for facilitating prototypes and demonstration

Country	Test Infrastructure	Max. Capacity (MW)	
Portugal	Pilot Zone	80 → 250	
UK	EMEC	20	
	Wave Hub	20	
Ireland	Galway Bay	*	
Denmark	Nissum Bredning	* *	
France	SEMREV	2	
Spain	BIMEP	20	
Norway	Runde	* *	

* Not grid connected ** n

** not specified

Situation and Perspectives

Regulatory issues

- Licensing is expensive, long and very laborious process
- Enormous differences among countries in time/expenses
- Ideal process: ONE STOP SHOP

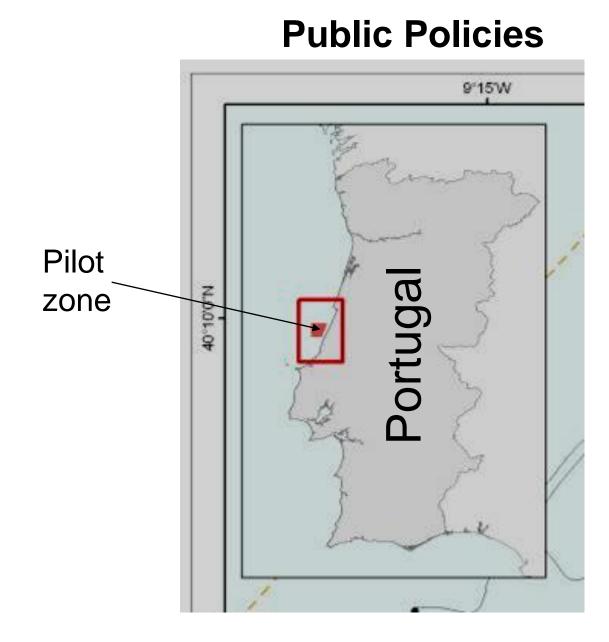
Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Test sites for wave and tidal energy systems in Europe

Source: EQUIMAR – Draft report on the state of ocean energy in Europe: technologies, test sites, and joint projects, 2011

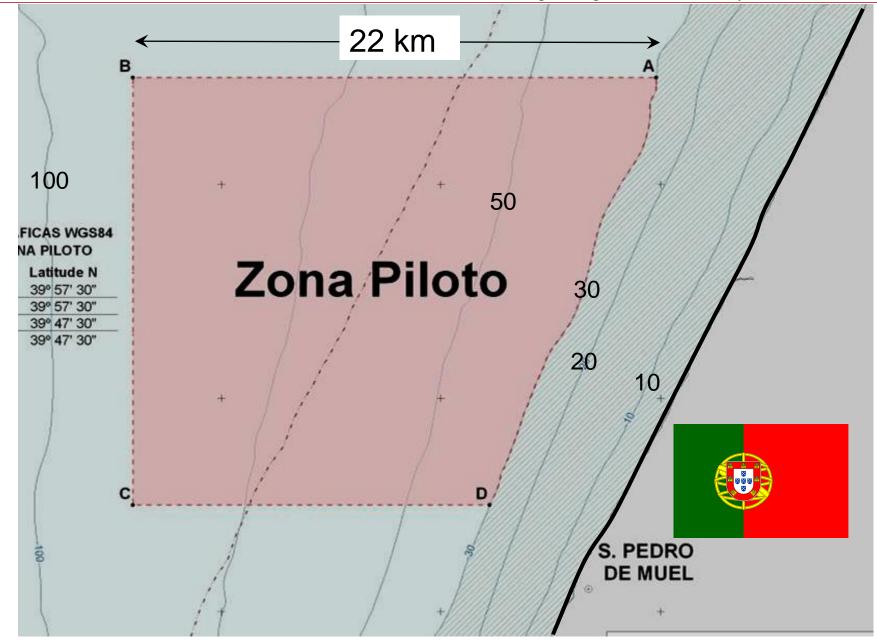
Public Policies

Portuguese Public Policies



Pilot Zone:

- Simplified and fast licensing through a Managing Company for demonstration, pre-commercial and commercial phases
- 80 MW (medium voltage) + 250 MW (high voltage) connection
- GIS with relevant data
- Infrastructures promoted by the Managing Company


(laws published in 2008, 2009, 2010)

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

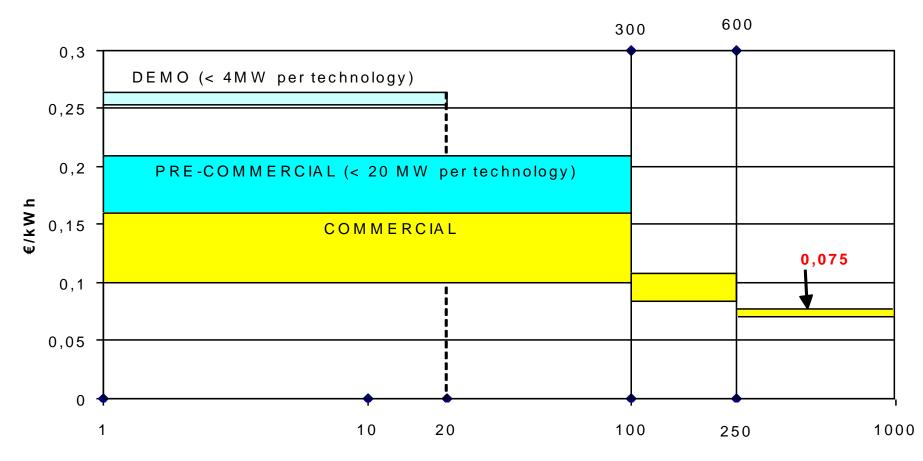
Public Policies

Portuguese Public Policies

Feed-in tariff:

- 0.26 €/kWh for demonstration.
- 0.16 0.21 €/kWh for pre-commercial.
- 0.075 0.16 €/MWh for commercial.

Tariff depends on installed power per technology in Portugal and elsewhere and quality of the technology & project.


Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies

Portuguese Public Policies

National Power (MW)

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies

Financial incentives: capital and other economic governmental support

Funding in Ireland

Phase	Year	Task	Cost (M€)
1	2007	Prototype development (scale 1/4)	4.9
2	2008-10	Pre-commercial devices (full scale)	6.9-10.5
3	2011-15	Pre-commercial array (full scale)	10.1-11.15
4	Onwards	Further market development	To be decided

Public Policies Ireland

Funding schemes

Wo	rk Type	Feasibility	Research and Development Prototype		Prototype	
Stage		Concept	Validation Model	Lab Design Model	Process Model	Prototype
Industry Projec	t	up to 45%	up to 45%	up to 45%	up to 45%	up to 40%
Collaboration	3 rd Level	up to 75%	up to 75%	up to 75%	up to 75%	N/A
Project	Industry	up to 45%	up to 45%	up to 45%	up to 45%	N/A
Typical Duration	n	2 months	4 months	4 months	12 months	12 – 18 months
Indicative Fundi	ing	<€15,000	€30,000 - €45,000	€50,000 - €100,000	100,000 - €250,000	Indicative €1,000,000
Examples of Wo	rk type	Desk study Patent / Paper	Numerical model	Medium scale test	Real Ocean testing	Full Scale testing Grid connection
undertaken		search	Small scale testing	Survival Moorings	Motions Control	Control Optimisation
Assessment			Expert Review		Review and	Negotiation

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies

Ireland

Galway Bay Test Site - October 2007

the second se

Scale: 1/4

OE Buoy

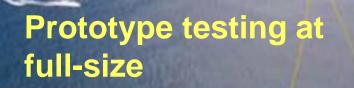
WaveBob

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies

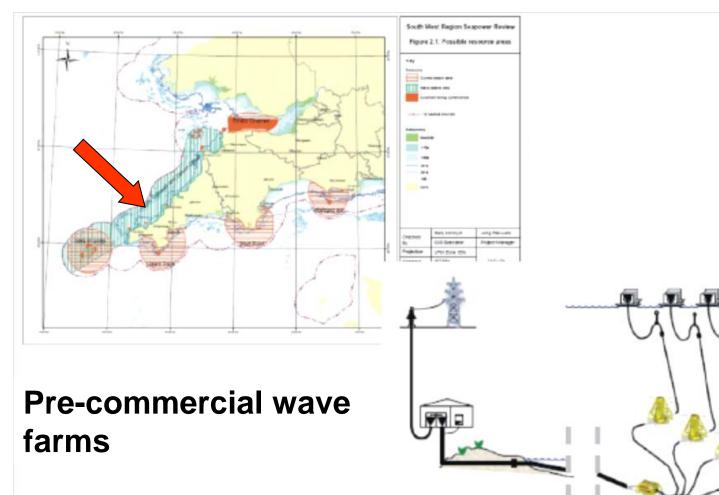
Nissun Brending Test Site, Northern Denmark

Scales 1/10 - 1/4


Tested devices:

- Wave Dragon
- Wave Star
- others

Public Policies EMEC, Orkney, Scotland, UK



Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies

WAVE HUB, Cornwall, SW England, UK

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies European Commission

Funding of Ocean Energy Projects, 1990-2008

Framework Programme	Number of Projects	Total Eligible Cost	Total EC Contribution
		(M€)	(M€)
FP2 (JOULE I)	2	0.52	0.52
FP3 (JOULE II)	8	6.36	3.05
FP4 (JOULE III)	11	12.14	6.91
FP5	4	7.47	4.54
FP6	4	26.1	7.3
FP7*	2	9.9	7.5
Total	31	62.49	29.82

* First Call 2007 only

Public Policies European Commission

Funding of Ocean Energy Projects in 2008

Project Acronym	Duration (Months)	EC Funding for the Whole Duration
WAVE DRAGON MW	> 36	2.431.000 €
SEEWEC	¥ 2 42	2.299.755€
WAVE SSG	3 0	1.000.000€
CORES	Ш 36	3.449.588 €
EQUIMAR	36	3.990.024 €

Public Policies

Ocean Energy Systems

International Energy Agency

Implementing Agreement on Ocean Energy Systems

Vision

To realise, by 2020, the use of cost-competitive, environmentally sound ocean energy on a sustainable basis.

Mission

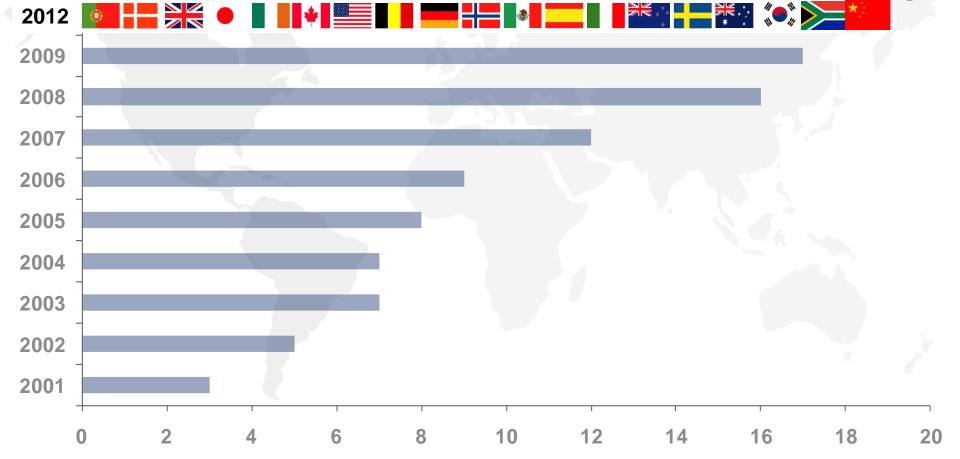
To facilitate and co-ordinate ocean energy research, development and demonstration through international co-operation and information exchange.

Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies Objectives

5 Year Strategic Plan (2007 - 2011)

- 1. To actively encourage and support the development of networks of participants involved in R, D & D, prototype testing and deployment, policy development and facilitate networking opportunities
- To promote and facilitate collaborative research, development, and demonstration to identify and address barriers to, and opportunities for, the development and deployment of ocean energy technologies
- To promote the harmonization of standards, methodologies, terminologies, and procedures, where such harmonization will facilitate the development of ocean energy
- To become a trusted source of objective information and be effective in disseminating such information to ocean energy stakeholders, policymakers and the public
- To promote policies and procedures consistent with sustainable development


Processes, Materials and Constructions in Civil and Environmental Engineering Florence 18-19 April 2012

Public Policies

Ocean Energy Systems

Present Membership

END OF PART 5 WAVE ENERGY SITUATION AND PERSPECTIVES

